3D ReRAM with Field Assisted Super-Linear Threshold (FAST[™]) Selector Technology

FOR SUPER DENSE, LOW POWER, LOW LATENCY DATA STORAGE SYSTEMS

SUNG HYUN JO, TANMAY KUMAR, MEHDI ASNAASHARI, WEI D. LU, HAGOP NAZARIAN CROSSBAR INC, SANTA CLARA, USA

3D ReRAM FAST[™] Selector Technology

- ReRAM Architectures
- ReRAM FAST[™] Technology
- ReRAM FASTTM Device Performance
- ReRAM FAST[™] System Performance

Architectural ReRAM Classification

1T1R with Linear ReRAMs

One Select transistor per ReRAM

 Suited for low latency, high speed embedded memory operation or high performance NOR products

Cell size dominated by the select transistor

1TnR with Non-Linear ReRAMs

One Access transistor for many ReRAMs

- Suited for high density high performance memory (NAND/SCM memory)
- 3D architecture

 Under array utilized for peripheral circuits yielding high array efficiency

 $Cell \ area = \frac{4F^2}{\# RRAM \ Layers}$

The Sneak Path Issue with ReRAM

• When the array size increases:

- Programming or Erase power consumption increases this will demand large decoding transistors and impact silicon area
- During Read sensing margin will be quickly diminished Ion/(Ioff+Ileak) ratio decreases
- Not possible to make high density, high performance, & efficient arrays with linear resistive cells

A Non-Linear ReRAM with High Selectivity

A device with very high selectivity is needed to suppress the sneak path current in large arrays Selectivity feature activates or selects a cell based on the potential across the ReRAM cell Selectivity ratio is measured by HSR (Half Select Ratio)

ReRAM FASTTM Selector Technology Characteristics

ReRAM + Selector (1S1R)

- Cross-point array integration of ReRAM + Selector
 - High HSR & sharp switching slope of a selector
 - Small voltage overhead for selector integration

7

ReRAM 1R Component

- Used 1R from one of Crossbar's 1T1R technologies
- No high voltage forming process required

ASIA SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE

FAST[™] Selector Component

- Utilizes an oxide-based Super-Liner Threshold (SLT) layer
- Bidirectional volatile on-off operation (E-field assisted)
 - Ideal for bipolar ReRAM
 - Formation of volatile percolation paths in SLT select layer at V_{TH}

Selectivity (HSR) & Switching Slope

- Half Select Ratio (HSR, $I_{@V}/I_{@0.5V}$) of > 10⁷
 - Enables larger array & reduced power consumption
- Extremely sharp switching of < 5mV/dec.
 - Offers more read voltage margin & faster read

Volatile Selector Switching

- Sub-5ons volatile switching and recovery times
 - Conducting state
 (a) V > V_{TH}
 - Insulating state (a) V < V_{TH}

Selector Cycling

• Reliable switching over 10¹¹ cycles

Selector Leakage Current

• Low noise measurement confirmed the leakage current less than 0.1pA

Selector Arrays

 Suppression of leakage current confirmed in 4Mb crosspoint selector array

1S1R Cycling

 1S1R cycling demonstration with large on/off memory ratio and selectivity

ReRAM + FASTTM Device Performance

Huge Array Capacity Enabled by High HSR

Large HSR enables super high density products with high array efficiency

**Requirements: 20mA programming ICC budget with 2048bits program simultaneously

Low Power Consumption Enabled by High HSR

Large HSR enables low power and high density products, significantly reducing the sneak path and power consumption

Superior Performance Enabled by High HSR

- Large HSR enables 1TnR architecture suited for high performance high density products
- 25X performance advantage over traditional NAND

19

Existing NV Memory Technology Comparison

Feature	NOR	NAND	ReRAM	
Non-Volatility	Yes	Yes	Yes	
Random Read Time	90ns -100ns	50us	70ns - NOR 1us - NAND	
Byte Write Page Write	NO Program page/byte Erase large sector	No Program page Erase large sector	Yes, Overwrite Yes, Overwrite	
Write/Program Time	700us/256B	>1000us /8KB (MLC)	64us/8KB 16us/2KB 2us/Byte	
Erase Time/Size	30ms/4KB	>2ms(Block)	Not required	
Endurance	10 ⁵	MLC 10 ³	10 ⁸ - 10 ¹²	
Cell Size MLC/Stacking	6-8F ² MLC	SLC 5F ² MLC	SLC 4F ² Stacking, MLC	
Cost	Med	Low	Very Low	

Storage System Performance

SSD System NAND-Based

NAND Shortcomings: L2P Mapping, Garbage Collection, Wear Leveling, Bad Block Management, ECC Complexity

SSD System ReRAM-Based

ReRAM-Based SSD substantially reduces NAND shortcomings, thus significantly reducing controller complexity

SSD System Performance with NAND & ReRAM

				-
NAND Spec.	MLC	SLC	ReRAM	
NAND bus freq DDR (MHz)	100	100	100	
Bus width (bits)	8	8	8	
Page Size (KB)	16	16	4	
Shift Time + Overhead (us)	100	100	25	MB/co
Program Time (ms)	1.5	0.3	.032	
Read Latency (us)	50	25	1	
Write Amplification	3	2	1	
Effective Write xfer rate (MB/s)	32	53	160	

- ReRAM utilizes the Maximum Bandwidth of the channel
- ReRAM provides at least 5X performance improvement

 Crossbar demonstrates The FASTTM device with selectivity ratio of >1E6

- FAST+ReRAM based products provide superior performance and architectural flexibility enabling storage systems with:
 - Super high density Terabyte devices with 1TnR architecture
 - Low energy write/read operations
 - High performance with very low latency
 - Simplified Software and Hardware infrastructure

Acknowledgements

CROSSBAR TEAM

For further information on Crossbar's technology, visit us at <u>www.crossbar-inc.com</u>

